1,334 research outputs found

    Past electron-positron g-2 experiments yielded sharpest bound on CPT violation for point particles

    Full text link
    In our past experiments on a single electron and positron we measured the cyclotron and spin-cyclotron difference frequencies omega_c and omega_a and the ratios a = omega_a/ omega_c at omega_c = 141 Ghz for e^- and e^+ and later, only for e^-, also at 164 Ghz. Here, we do extract from these data, as had not done before, a new and very different figure of merit for violation of CPT symmetry, one similar to the widely recognized impressive limit |m_Kaon - m_Antikaon|/m_Kaon < 10^-18 for the K-mesons composed of two quarks. That expression may be seen as comparing experimental relativistic masses of particle states before and after the C, P, T operations had transformed particle into antiparticle. Such a similar figure of merit for a non-composite and quite different lepton, found by us from our Delta a = a^- - a^+ data, was even smaller, h_bar |omega_a^- - omega_a^+|/2m_0 c^2 = |Delta a| h_bar omega_c/2m_0 c^2) < 3(12) 10^-22.Comment: Improved content, Editorially approved for publication in PRL, LATEX file, 5 pages, no figures, 16

    Self-Excitation and Feedback Cooling of an Isolated Proton

    Full text link
    The first one-proton self-excited oscillator (SEO) and one-proton feedback cooling are demonstrated. In a Penning trap with a large magnetic gradient, the SEO frequency is resolved to the high precision needed to detect a one-proton spin flip. This is after undamped magnetron motion is sideband-cooled to a 14 mK theoretical limit, and despite random frequency shifts (larger than those from a spin flip) that take place every time sideband cooling is applied in the gradient. The observations open a possible path towards a million-fold improved comparison of the antiproton and proton magnetic moments

    Theoretical energies of low-lying states of light helium-like ions

    Full text link
    Rigorous quantum electrodynamical calculation is presented for energy levels of the 1^1S, 2^1S, 2^3S, 2^1P_1, and 2^3P_{0,1,2} states of helium-like ions with the nuclear charge Z=3...12. The calculational approach accounts for all relativistic, quantum electrodynamical, and recoil effects up to orders m\alpha^6 and m^2/M\alpha^5, thus advancing the previously reported theory of light helium-like ions by one order in \alpha.Comment: 18 pages, 9 tables, 1 figure, with several misprints correcte

    Cavity Control of a Single-Electron Quantum Cyclotron:\\Measuring the Electron Magnetic Moment

    Full text link
    Measurements with a one-electron quantum cyclotron determine the electron magnetic moment, given by g/2=1.00115965218073(28)[0.28 ppt]g/2 = 1.001\,159\,652\,180\,73\,(28)\,[0.28~\textrm{ppt}], and the fine structure constant, α1=137.035999084(51)[0.37 ppb]\alpha^{-1}=137.035\,999\,084\,(51)\,[0.37~\textrm{ppb}]. Brief announcements of these measurements are supplemented here with a more complete description of the one-electron quantum cyclotron and the new measurement methods, a discussion of the cavity control of the radiation field, a summary of the analysis of the measurements, and a fuller discussion of the uncertainties

    Quantum Logic with a Single Trapped Electron

    Get PDF
    We propose the use of a trapped electron to implement quantum logic operations. The fundamental controlled-NOT gate is shown to be feasible. The two quantum bits are stored in the internal and external (motional) degrees of freedom.Comment: 7 Pages, REVTeX, No Figures, To appear in Phys. Rev.

    CPT and Lorentz Tests in Penning Traps

    Get PDF
    A theoretical analysis is performed of Penning-trap experiments testing CPT and Lorentz symmetry through measurements of anomalous magnetic moments and charge-to-mass ratios. Possible CPT and Lorentz violations arising from spontaneous symmetry breaking at a fundamental level are treated in the context of a general extension of the SU(3) x SU(2) x U(1) standard model and its restriction to quantum electrodynamics. We describe signals that might appear in principle, introduce suitable figures of merit, and estimate CPT and Lorentz bounds attainable in present and future Penning-trap experiments. Experiments measuring anomaly frequencies are found to provide the sharpest tests of CPT symmetry. Bounds are attainable of approximately 102010^{-20} in the electron-positron case and of 102310^{-23} for a suggested experiment with protons and antiprotons. Searches for diurnal frequency variations in these experiments could also limit certain types of Lorentz violation to the level of 101810^{-18} in the electron-positron system and others at the level of 102110^{-21} in the proton-antiproton system. In contrast, measurements comparing cyclotron frequencies are sensitive within the present theoretical framework to different kinds of Lorentz violation that preserve CPT. Constraints could be obtained on one figure of merit in the electron-positron system at the level of 101610^{-16}, on another in the proton-antiproton system at 102410^{-24}, and on a third at 102510^{-25} using comparisons of HH^- ions with antiprotons.Comment: 31 pages, published in Physical Review

    Possible Spontaneous Breaking of Lorentz and CPT Symmetry

    Get PDF
    One possible ramification of unified theories of nature such as string theory that may underlie the conventional standard model is the possible spontaneous breakdown of Lorentz and CPT symmetry. In this talk, the formalism for inclusion of such effects into a low-energy effective field theory is presented. An extension of the standard model that includes Lorentz- and CPT-breaking terms is developed. The restriction of the standard model extension to the QED sector is then discussed.Comment: Talk presented at Non-Accelerator New Physics, Dubna, Russia, July 199

    Everyone Makes Mistakes - Including Feynman

    Get PDF
    This talk is dedicated to Alberto Sirlin in celebration of his seventieth birthday. I wish to convey my deep appreciation of his many important contributions to particle physics over 40 years and look forward to many more years of productive research.Comment: 16 pages postscript, also available through http://w4.lns.cornell.edu/public/CLN
    corecore